Osteoreparation around the polylactide, implanted into the metadiaphys defect of the femur (experimental study)

Authors

DOI:

https://doi.org/10.15674/0030-598720182102-107

Keywords:

biodegradation of implants, polylactide, rats, metadiaphys of the femur, histology

Abstract

Polylactides are synthetic materials that are X-ray-transparent, do not result in immune reactions, easy to sterilize, degrade to CO2 a nd H2O after implantation into the bone — natural products of metabolic processes. Materials based on polylactides are constantly modified in order to improve osteointegration and mechanical properties, to create a controlled degradation.

Objective: to study regeneration of bone and osteointegration of polylactide in the case of implantation it into the metadiaphys defect of the rats femur.

Methods: we implanted samples of polylactide with size 3×2 mm into the metadiaphys bone defect of 35 white rats. We assessed bone regeneration due to histology study with morphometry in order to define osteointegration index in 15 days, 1, 3, 6 and 9 months after the removal of the samples.

Results: on the 15th day the implant was surrounded by immature bone. High index of osteointegration — 46.6 ± 1.1 was observed. Active formation of bone tissue around the implant continued up to 3 months, on the later period index of osteointegration did not change. It can testify about stopping of bone remodeling. Host bone and bone marrow were without destructive changes. On the sites of polylactide, adjacent to the bone marrow and intertrabucular spaces, cells were located directly on the implant, we did not observe any cells infringement. Signs of inflammatory process were not found. In 9 months after surgery we did not find any destruction of polylactide, index of osteointegration was 97 %.

Conclusions: polyplactide implants are characterized by low rate of resorption, high osteoconductive and osteointegrative properties, biocompatibility with bone.

Author Biographies

Vasyl Makarov, SE «Specialized Multidisciplinary Hospital № 1 of the Ministry of Health of Ukraine», Dnipro 

PhD in Orthopaedics and Traumatology 

 

Ninel Dedukh, SI "D.F.Chebotarev Institute of Gerontology of the NAMS of Ukraine", Kyiv 

Dr. Biol. Sci., Prof. 

 

 

Olga Nikolchenko, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

PhD in Biol. Sci. 

 

References

  1. Mamuladze, T. Z., Bazlov, V. A., Pavlov, V. V., & Sadovoy, M. A. (2016). The use of modern synthetic materials for the replacement of bone defects by the method of individual contour plastics. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 11, 451–455. (in Russian)
  2. Hamad, K., Kaseem, M., Yang, H. W., Deri, F., & Ko, Y. G. (2015). Properties and medical applications of polylactic acid: A review. Express Polymer Letters, 9(5), 435-455. doi:https://doi.org/10.3144/expresspolymlett.2015.42
  3. Sevastyanov, V. I. (2001). Biomaterials for artificial organs. Bulletin of transplantology and artificial organs, 3–4, 123–31. (in Russian)
  4. Radchenko, V. A., Dedukh, N. V., Malyshkina, S. V., & Bengus, L. M. (2006). Bioresorbable polymers in orthopedics and traumatology. Orthopaedics, traumatology and prosthetics, 3, 116–124. (in Russian)
  5. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. doi:https://doi.org/10.1016/j.addr.2016.06.012
  6. Savaris, M., Santos, V. D., & Brandalise, R. (2016). Influence of different sterilization processes on the properties of commercial poly(lactic acid). Materials Science and Engineering: C, 69, 661-667. doi:https://doi.org/10.1016/j.msec.2016.07.031
  7. Kulkarni, R. K., Moore, E. G., Hegyeli, A. F., & Leonard, F. (1971). Biodegradable poly(lactic acid) polymers. Journal of Biomedical Materials Research, 5, 169–181.
  8. Mainil-Varlet, P. J. (1996). Polylactides in orthopaedic surgery and their potential for the fixation of porotic bones. Groningen: Regenboog.
  9. Tuompo, P., Partio, E. K., Pätiälä, H., Jukkala-Partio, K., Hirvensalo, E., & Rokkanen, P. (2001). Causes of the clinical tissue response to polyglycolide and polylactide implants with an emphasis on the knee. Archives of Orthopaedic and Trauma Surgery, 121(5), 261-264. doi:https://doi.org/10.1007/s004020000221
  10. P. Pawar, R., U. Tekale, S., U. Shisodia, S., T. Totre, J., & J. Domb, A. (2014). Biomedical Applications of Poly(Lactic Acid). Recent Patents on Regenerative Medicine, 4(1), 40-51. doi:https://doi.org/10.2174/2210296504666140402235024
  11. Khoninov, В. V., Sergunin, О. N., & Skoroglyadov, P. А. (2014). Biodegradated materials application in traumatology and orthopedics (Review). Bulletin RSMU, 1, 20–4. (in Russian)
  12. Laine, P., Kontio, R., Lindqvist, C., & Suuronen, R. (2004). Are there any complications with bioabsorbable fixation devices? International Journal of Oral and Maxillofacial Surgery, 33(3), 240-244. doi:https://doi.org/10.1006/ijom.2003.0510
  13. Kontakis, G. M., Pagkalos, J. E., Tosounidis, T. I., Melissas, J., & Katonis, P. (2007). Bioabsorbable materials in orthopaedics. Acta Orthopaedica Belgica; 73(2), 159–69.
  14. European Convention for the protection of vertebrate animals used for experimental and other scientific purpose. (1986). Council of Europe.
  15. On the Protection of Animals from Cruel Treatment: Law of Ukraine No. 3447-IV. (2006). Kyiv: Bulletin of the Verkhovna Rada of Ukraine.
  16. NatureWorks LLC. Ingeo™ Biopolymer 4032D Technical Data Sheet. (n.d.). Retrieved from https://www.natureworksllc.com/~/media/Technical_Resources/Technical_Data_Sheets/TechnicalDataSheet_4032D_films_pdf.pdf
  17. Sarkisov, D. S., & Perov, Yu. L. (1996). Microscopic techniques. Manual for doctors and laboratory technicians. Moskow: Medicine. (in Russian)
  18. Avtandilov, G. G. (1990). Medical morphometry. Moscow: Medicine. (in Russian)
  19. Albrektsson, T., & Johansson, C. (2001). Osteoinduction, osteoconduction and osseointegration. European Spine Journal, 10(0), S96–S101. doi:https://doi.org/10.1007/s005860100282
  20. Dolzhikov, А. А., Kolpakov, А. Ya., Yarosh, A. L., Molchanova, A. S., & Dolzhikova, I. N. (2017). Giant cells of foreign bodies and tissue reactions on the surface of implants. Kursk Scientific and Practical Bulletin "Man and His Health", 3, 86–94. doi: https://doi.org/10.21626/vestnik/2017-3/15. (in Russian)
  21. Agadzhanyan, V. V., Pronskikh, A. A., Demina, V. A., Gomzyak, V. I., Sedush, N. G., & Chvalun, S. N. (2016). Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma, 4, 85–93. (in Russian)
  22. Dedukh, N. V., Nikolchenko, О. А., & Makarov, V. B. (2018). Restructuring of bone around polylactide acid implanted into defect of diaphysis. Bulletin of problems in biology and medicine, 1, 1(142), 275–279. doi:https://doi.org/10.29254/2077-4214-2018-1-1-142-275-279. (in Ukrainian)

How to Cite

Makarov, V., Dedukh, N., & Nikolchenko, O. (2023). Osteoreparation around the polylactide, implanted into the metadiaphys defect of the femur (experimental study). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 102–107. https://doi.org/10.15674/0030-598720182102-107

Issue

Section

ORIGINAL ARTICLES