Open Access Open Access  Restricted Access Subscription Access

Effect of bone canal widening after anterior cruciate ligament reconstruction

Sergey Krasnoperov, Maksym Golovaha

Abstract


One of the complications after anterior cruciate ligament reconstruction is widening of bone canals after surgery, it can lead to slow integration of the graft with bone, promotion of secondary instability and revision reconstruction of anterior cruciate ligament. In order to fix the graft in the femoral and tibia bones endobuttons and interferent screws are widely used.

Objective: to evaluate the widening of bone canals after anterior cruciate ligament reconstruction due to computer tomography.

Methods: there were 44 patients, who were divided into: group A (24) — technique «all inside» with fixing of semitendinosus graft with short cortical endobutton in the femur and tibia; group B (20) — fixing of semitendinosus and gracilis graft with interferent screws (transportal technique). The rehabilitation protocol was the same for both groups. The mid term for computer tomography study was 10 months after surgery.

Results: in group A the average widening of bone canal diameter in the femur was 15 % in the entrance, 12 % in the middle part as to the primary size. In group B — 10 and 7 % respectively. The diameter of the tibia canal enlarged in average: in group A 19 % in the entrance, 15 % in the middle part; in group B — 15 and 11 % respectively. According to clinical study there was not significant difference between groups.

Conclusions: in the group where we used cortical fixators the widening of the canals was larger than in those where we used interferent screws, but the difference was not significant, only 5 % for femoral side and 4 % for tibia canals. X-ray signs of canal widening did not influence on clinical or objective results of anterior cruciate ligament reconstruction.


Keywords


anterior cruciate ligament reconstruction; widening of bone canals; computer tomography

References


Golovakha, M., Krasnoperov, S., Titarchuk, R., Zabielin, I., Tverdovsky, A., & Orljanski, W. (2017). Results of anterior cruciate ligament restoration using «all inside» techniques. Orthopaedics, traumatology and prosthetics, 2, 84-91. doi:10.15674/0030-59872017284-91

Karpinskiy, M. Yu., Karpinskaya, E. D., Schikota, R. А., Goncharova, L. D., & Tjazhelov, A. A. (2012). Results damage modeling ligamentous apparatus of the knee. Trauma, 13(3), 164–171.

Ohori, T., Mae, T., Shino, K., Tachibana, Y., Sugamoto, K., Yoshikawa, H., & Nakata, K. (2017). Morphological changes in tibial tunnels after anatomic anterior cruciate ligament reconstruction with hamstring tendon graft. Journal of Experimental Orthopaedics, 4(1). doi:10.1186/s40634-017-0104-6

Höher, J., Livesay, G. A., Ma, C. B., Withrow, J. D., Fu, F. H., & Woo, S. L. (1999). Hamstring graft motion in the femoral bone tunnel when using titanium button/ polyester tape fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 7(4), 215-219. doi:10.1007/s001670050151

Iorio, R., Di Sanzo, V., Vadalà, A., Conteduca, J., Mazza, D., Redler, A., … Ferretti. A. (2013). ACL reconstruction with hamstrings: how different technique and fixation devices influence bone tunnel enlargement. European review for medical and pharmacological sciences, 17(21), 2956–2961.

Barrett, G. R., Papendick, L., & Miller, C. (1995). Endobutton button endoscopie fixation technique in anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 11(3), 340-343. doi: 10.1016/0749-8063(95)90015-2

Harato, K., Niki, Y., Toyoda, T., Kamata, Y., Masumoto, K., Otani, T., & Suda, Y. (2016). Self-flip technique of the tightrope of button for soft-tissue anterior cruciate ligament reconstruction. Arthroscopy Techniques, 5(2), e391-e395. doi:10.1016/j.eats.2016.01.022

Rodeo, S. A., Kawamura, S., Kim, H., Dynybil, C., & Ying, L. (2006). Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit. The American Journal of Sports Medicine, 34(11), 1790-1800. doi:10.1177/0363546506290059

Sim, J., Kim, J., Lee, S., Bae, J., & Seon, J. (2015). Comparison of tunnel variability between trans-portal and outside-in techniques in ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 25(4), 1227-1233. doi:10.1007/s00167-015-3950-8

Wilde, J., Bedi, A., & Altchek, D. W. (2014). Revision anterior cruciate ligament reconstruction. Sports Health, 6(6), 504–518. doi:10.1177/1941738113500910

Lopes, O. V., De Freitas Spinelli, L., Leite, L. H., Buzzeto, B. Q., Saggin, P. R., & Kuhn, A. (2015). Femoral tunnel enlargement after anterior cruciate ligament reconstruction using RigidFix compared with extracortical fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 25(5), 1591-1597. doi:10.1007/s00167-015-3888-x

Weber, A. E., Delos, D., Oltean, H. N., Vadasdi, K., Cavanaugh, J., Potter, H. G., & Rodeo, S. A. (2015). Tibial and femoral tunnel changes after ACL reconstruction. The American Journal of Sports Medicine, 43(5), 1147-1156. doi:10.1177/0363546515570461

Krasnoperov, S., Golovakha, M., & Shalomeev, V. (2017). Mechanical properties of cortical fixators for anterior cruciate ligament reconstruction. Orthopaedics, traumatology and prosthetics, 1, 39-45. doi:10.15674/0030-59872017139-45

Silva, A., & Sampaio, R. (2015). Quadruple semitendinosus graft construct and suspensory button fixation for anterior cruciate ligament reconstruction. Arthroscopy Techniques, 4(6), e801-e806. doi:10.1016/j.eats.2015.07.030

Akoto, R., Müller-Hübenthal, J., Balke, M., Albers, M., Bouillon, B., Helm, P., … Höher, J. (2015). Press-fit fixation using autologous bone in the tibial canal causes less enlargement of bone tunnel diameter in ACL reconstruction - a CT scan analysis three months postoperatively. BMC Musculoskeletal Disorders, 16(1). doi:10.1186/s12891-015-0656-5

Colvin, A., Sharma, C., Parides, M., & Glashow, J. (2010). What is the best femoral fixation of hamstring autografts in anterior cruciate ligament reconstruction?: A Meta-analysis. Clinical Orthopaedics and Related Research, 469(4), 1075-1081. doi:10.1007/s11999-010-1662-4

Chhabra, A., Kline, A. J., Nilles, K. M., & Harner, C. D. (2006). Tunnel expansion after anterior cruciate ligament reconstruction with autogenous hamstrings: a comparison of the medial portal and transtibial techniques. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(10), 1107-1112. doi:10.1016/j.arthro.2006.05.019

Gifstad, T., Foss, O. A., Engebretsen, L., Lind, M., Forssblad, M., Albrektsen, G., & Drogset, J. O. (2014). Lower risk of revision with patellar tendon autografts compared with hamstring autografts. The American Journal of Sports Medicine, 42(10), 2319-2328. doi:10.1177/0363546514548164

Lind, M., & Sauer, S. (2017). Bone tunnel enlargement after ACL reconstruction with hamstring autograft is dependent on original bone tunnel diameter. The Surgery Journal, 03(02), e96-e100. doi:10.1055/s-0037-1603950

Osti, M., Krawinkel, A., Ostermann, M., Hoffelner, T., & Benedetto, K. P. (2015). Femoral and tibial graft tunnel parameters after transtibial, anteromedial portal, and outside-in single-bundle anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 43(9), 2250-2258. doi:10.1177/0363546515590221

Kawaguchi, Y., Kondo, E., Onodera, J., Kitamura, N., Sasaki, T., Yagi, T., & Yasuda, K. (2013). Tunnel enlargement and coalition after anatomic double-bundle anterior cruciate ligament reconstruction with hamstring tendon autografts. Orthopaedic Journal of Sports Medicine, 1(1), 232596711348644. doi:10.1177/2325967113486441

Di Matteo, B., Loibl, M., Andriolo, L., Filardo, G., Zellner, J., Koch, M., & Angele, P. (2016). Biologic agents for anterior cruciate ligament healing: A systematic review. World Journal of Orthopedics, 7(9), 592. doi:10.5312/wjo.v7.i9.592

Jagodzinski, M., Foerstemann, T., Mall, G., Krettek, C., Bosch, U., & Paessler, H. (2005). Analysis of forces of ACL reconstructions at the tunnel entrance: is tunnel enlargement a biomechanical problem? Journal of Biomechanics, 38(1), 23-31. doi:10.1016/j.jbiomech.2004.03.021




DOI: https://doi.org/10.15674/0030-59872018295-101

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Sergey Krasnoperov, Maksym Golovaha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.