Alphacalcidol in bone regeneration

Authors

DOI:

https://doi.org/10.15674/0030-59872013173-83

Keywords:

fracture, bone mineral density, experimental animals, patients, alfacalcidol

Abstract

The article deals with results of an experimental study of animals with an injury of their femur, as well as it contains a generalized analysis of results of treatment of 35 patients, who suffered from affected reparative osteogenesis, with alphacalcidol (Alpha D3-Teva drug). It was found out that in the animals with modelled osteoporosis the drug stimulated bone formation in the injury area versus untreated rats. More proximally from the area of injury, a larger thickness and a greater number of trabeculae of bone, better osteointegration of the spongy bone with the compact one, and a less ratio between an eroded bone volume and that of trabeculae of bone versus the animals with modelled osteoporosis without any treatment were revealed. In conditions of the treatment of the patients with alphacalcidol a positive effect was achieved in 94 % of cases. No progression of osteopoenic syndrome in the skeletal segment above the area of injury was detected. A higher mineral density of the bone tissue was observed. Tolerance to the drug was regarded as good on the basis of an objective examination and questioning of the patients.

References

  1. Korzh N. A. Bone regeneration: modern view on the problem. Disorder of bone regeneration / N. A. Korzh, C. C. Romanenko, L. D. Goridova // Orthopaedics, traumatology and prosthetics. — 2006. — № 1. — P. 84–90.
  2. Coulet J. Nonunions and malunions of the tibia // J. Coulet, J. Bray // Operative Orthopedics / W. Michael, J. B. Chapman. — Second ed. — Philadelphia: Lippincott Company, 1993.
  3. Frost H. M. The biology of fracture healing. An overwiev for clinicans. Part I / H. M. Frost // Clin. Orthop. Relat. Res. — 1989. — Vol. 248. — P. 294–309.
  4. Bone traumatic damages — risk factor of development osteopenia syndrome and osteoporosis / Osteoporosis: epidemiology, clinic, diagnostic and treatment: Monograph / Edited by N. A. Korzh, V. V. Povoroznuk, N. V. Diedukh, I. A. Zupanets, M. I. Turchin et al. — Kharkov: Gold pages, 2002. — P. 292–300.
  5. Korzh N. A. Bone regeneration: modern view on the problem. Drugs for optimization reparative osteogenesis / N. A. Korzh, L. D. Goridova, N. V. Diedukh, C. C. Romanenko // Orthopaedics, traumatology and prosthetics. — 2006. — № 3. — P. 85–92.
  6. Bivalos effects on bone reparative regeneration: date of experimental and clinical investigations / V. V. Povoroznuk, N. V. Grigor’eva, F. V. Klimovitskii // Orthopaedics, traumatology and prosthetics.. — 2012. — Vol. 1, № 586. — P. 5–12.
  7. Aclasta effects on structural and functional conditions of bone tissue and reparative osteogenesis process at postmenopausal osteoporosis / V. V. Povoroznuk, V. M. Vaida, N. V. Diedukh, N. V. Grigor’eva // Orthopaedics, traumatology and prosthetics. — 2011. — № 2. — P. 26–32.
  8. Diedukh N. V. Bone defect regeneration at administration preparation “Osteogenon” for animals / N. V. Diedukh, A. M. Durnusov, S. V. Malyshkina // Orthopaedics, traumatology and prosthetics. — 2004. — №2.– P. 40–45.
  9. Diedukh N. V. New technologies in bone regeneration / N. V. Diedukh, S. A. Khmyzov, A. A. Tichonenko // Orthopaedics, traumatology and prosthetics. — 2008. — № 4. — P. 129–133.
  10. Seo E. G. 24R,25-dihydroxyvitamin D3: an essential vitamin D3 metabolite for both normal bone integrity and healing of tibial fracture in chicks / E. G. Seo, T. A. Einhorn, A. W. Norman // Endocrinology. — 1997. — Vol. 138, № 9. — P. 3864–3872.
  11. Dekel S. The effect of vitamin D and its metabolites on fracture repair in chicks / S. Dekel, R. Salama, S. Edelstein // Clin. Sci. (Lond). — 1983. — Vol. 65, № 4. — P. 429–436.
  12. Effect of 25-OH-vitamin D on fracture healing in elderly rats / A. D. Delgado-Martínez, M. E. Martínez, M. T. Carrascal et al. // J. Orthop. Res. — 1998. — Vol. 16, № 6. — P 650–653.
  13. Levels of active metabolites of vitamin D3 in the callus of fracture repair in chicks / C. Lidor, S. Dekel, T. Hallel, S. Edelstein // J. Bone Joint Surg. — 1987. — Vol. 69-B, № 1. — P. 132–136.
  14. Gurlek A. Modulation of growth factor/cytokine synthesis and signaling by 1,25-dihydroxyvitamin D3: implications in cell growth and differentiation / A. Gurlek, M. R. Pittelkow, R. Kumar // Endocrine Reviews. — 2002. — Vol. 23, № 6. — P. 763–786.
  15. Laboratory animals. Breeding, keeping, usage in experiment / I. P. Zapadnuk, V. I. Zapadnuk, E. A. Zakharia, B. V. Zapadnuk. — Kiev: High school, 1983. — 383 p.
  16. International standards for the content of laboratory animals — Electron resource: www.labdiet.com.
  17. International standards for the content of laboratory animals — Electron resource: www.teklad.com.
  18. European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. Strasbourg, 18.III.1986 [Електронний Electron resource : http://conventions.coe.int/Treaty/EN/Treaties/Html/123.htm.
  19. Law of Ukraine №3447-IV від 21.02.2006 «On protection of animals from abuse» (Article 26).
  20. Sarkisov S. D. Microscopy technique / D. S. Sarkisov, U. L. Perova. — Moscov: Medicine, 1996. — 542 p.
  21. Picrosirius-polarization staining method as an efficient histopathological tool for collagenolysis detection in vesical prolapse lesions / B. L. Figuiredo, G. P. Sampio, C. Ricardo et al. // Micron. — 2007, — Vol. 38, № 6, — Р. 580–583.
  22. Li X. J. Detection of collagens in hypertrophic scars by picrosirius polarization method / X. J. Li, T. Lei, J. H. Gao // Di Yi Jun Yi Da Xue Xue Bao. — 2002. — Vol. 422, № 3. — P. 217–219.
  23. Автандилов Г. Г. Медицинская морфометрия: [руководство] / Г. Г. Автандилов. — М.: Медицина, 1990. — 384 с.
  24. Van Driel M. Osteoblast differentiationand control by vitamin D and vitamin D metabolites / M. Van Driel, H. A. P. Pols, J. P. T. M. Leeuwem // Curr. Pharm. Des. — 2004. — Vol. 10. — P. 2535–2555.
  25. Changes in bone mass and bone turnover following tibial shaft fracture / S. W. Veitch, S. C. Findlay, A. J. Hamer et al. // J. Osteoporosis Int. — 2006. — Vol. 17, № 3. — P. 364–372.
  26. Association between decreased bone mineral density and severity of distal radial fractures / R. A. E. Clayton, M. S. Gaston, S. H. Ralston et al. // J. Bone Joint Surg. — 2009. — Vol. 91-A. — P. 613–619.
  27. Does osteoporosis increase complication risk in surgical fracture treatment? A protocol combining new endpoints for two prospective multicentre open cohort studies / S. Goldhahn, F. Kralinger, D. Rikli et al. // BMC Muskuloskeletal disorders. — 2010. — Vol. 11. — P. 256.
  28. Bone loss and fracture risk after reduced physical activity / A. Nordstrom, C. Karlsson, F. Nyquist et al. // J. Bone Miner. Res. — 2005. — Vol. 20, № 2 — P. 202–207.
  29. Kurdy N. M. Serology of abnormal fracture healing: the role of PIIINP, PICP, and BsALP / N. M. Kurdy // J. Orthop. Trauma. — 2000. — Vоl. 14, № 1. — P. 48–53.
  30. Changes in biochemical markers after lower limb fractures / K. Stoffel, H. Engler, M. Kuster, W. Riesen. // Clinical Chemistry. — 2007. — Vol. 53, № 1. — P. 131–134.

How to Cite

Korzh, M., Dedukh, N., Goridova, L., Pobel, Y., Romanenko, K., & Doluda, Y. (2013). Alphacalcidol in bone regeneration. ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (1), 73–83. https://doi.org/10.15674/0030-59872013173-83

Issue

Section

ORIGINAL ARTICLES