Study of stress and strain state distribution of spinal model in surgical techniques for various techniques for thoracolumbar burst fractures (part two)

Authors

  • Volodymyr Radchenko
  • Kostiantin Popsuishapka
  • Oleksandr Yaresko

DOI:

https://doi.org/10.15674/0030-5987201726-13

Keywords:

burst fractures, thoracic and lumbar spine, finite element method, stress-strain state, transpedicular fixation

Abstract

When choosing the tactics of surgical treatment in burst frac­tures of the lower thoracic and lumbar spine, the questions re­main about the extent of fixation, the possibility of correcting the deformity, and the feasibility of performing a laminectomy.

Objective: to construct finite-element biomechanical models of an burst fracture of the ThXII vertebral body with 100 % le­sion in the ThIX–LVvertebra block and analyze the stress-strain state with different types of fixation.

Methods: four models of the ThIX–LVvertebra block were developed: 1) replacement of the fractured vertebral body with an interbody support, de­struction of vertebral arches and fixation of vertebrae ThX, ThXI, LI, LIIt ranspedicular c onstruction; 2 ) d estruction o f 100 % of the volume of the vertebral body ThXIIand fixation of the ver­tebrae ThX, ThXI, LI, LIItranspedicular construction; 3) replace­ment of the destroyed vertebra by an interbody support, destruc­tion of arches of vertebra ThXIIand fixation of vertebrae ThXI and LI transpedicular construction; 4) replacement of the destroyed vertebra by an interbody support.

Results: it was established that transpedicular construction bears the main load, maxi­mum stresses were found in the posterior parts of the spine (up to 6 MPa) and the sections of the rods between the vertebrae (36.9–65.7 MPa, depending on the model). When using 8 screws without an interbody support for fixation, the stress level in­creased significantly: in the «screw – bone» region more than 2 times, in the rods — by 70 %. In the case of using 4 screws, the level of stress in the area of the posterior support complex averaged 10–40 % on average.

Conclusions: in vertebral blocks the most strained are the posterior parts of the spine and the portions of the rods between vertebras. The use of a 360° fusion increases the load in the «screw – bone» zone, and only the interbody support — in the region of the posterior parts of the spine.

Author Biographies

Volodymyr Radchenko

Sytenko Institute of Spine and Joint Pathology, Kharkiv. Ukraine 

MD, Prof. in Orthopaedics and Traumatology

volod56@ukr.net

Kostiantin Popsuishapka

Sytenko Institute of Spine and Joint Pathology, Kharkiv. Ukraine 

PhD

konstantin.popsuy@gmail.com

Oleksandr Yaresko

Sytenko Institute of Spine and Joint Pathology, Kharkiv. Ukraine

avyresko@gmail.com

References

  1. Berezovsky VА. Biophysical descriptions of fabrics of man: The manual. Kyiv: Naukova dumka, 1990. 224 p. (in Russian)
  2. Knets IV. Deformation and destruction of hard biological fabrics. Riga: Znatie, 1980. 320 p. (in Russian)
  3. Popsuishapka KO. Metaanalysis of treatment results in lower thoracic and lumbar spine burst fractures. Orthopaedics, Traumatology and Prosthetics. 2016;(4):134–42. doi:10.15674/0030-598720164134-142. (in Ukrainian)
  4. Obrazov IF. Problems of durability are in biomechanics: Teaching aids for technical and biological specialties of universities. Moskow: Vyshaya shkola, 1988. 311 p. (in Russian)
  5. Radchenko VO, Popsuishapka KO, Yaresko OV. Investigation of stress-strain state in spinal model for various methods of surgical treatment of thoracolumbar burst fractures (part one). Orthopaedics, Traumatology and Prosthetics. 2017;1:134–42. doi: 10.15674/0030-59872017127-33. (in Ukrainian)
  6. Langrana NA, Harten RD, Lin DC, Reiter MF, Lee CK. Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine. 2002;27(5):498–508.
  7. Liebschner MA, Kopperdahl DL, Rosenberg WS, Keaveny TM. Finite element modeling of the human thoracolumbar spine. Spine. 2003;28(6):559–65. doi: 10.1097/01.BRS.0000049923.27694.47.
  8. Lazoglu I, Akgun E. Rigid and dynamic spinal system modeling by finite elements methods (in Turkish). Intervertebral disc disease and dynamic stabilization of lumbar spine. Ed. Ozer AF. V. K. V. American Hospital Publications, 2011. Chapter 7. рр. 72–84.
  9. Altay M, Ozkurt B, Aktekin CN, Ozturk AM, Dogan O, Tabak AY. Treatment of unstable thoracolumbar junction burst fractures with short- or long-segment posterior fixation an magerl type A fractures. Eur Spine J. 2007;16(8):1145– 55. doi: 10.1007/s00586-007-0310-5.
  10. Sasso RC, Renkens K, Hanson D, Reilly T, McGuire RA Jr, Best NM Unstable thoracolumbar burst fractures: anterior-only versus short-segment posterior fixation. J Spinal Disord Tech. 2006;19(4):242–8. doi: 10.1097/01.bsd.0000211298.59884.24.

How to Cite

Radchenko, V., Popsuishapka, K., & Yaresko, O. (2017). Study of stress and strain state distribution of spinal model in surgical techniques for various techniques for thoracolumbar burst fractures (part two). ORTHOPAEDICS TRAUMATOLOGY and PROSTHETICS, (2), 6–13. https://doi.org/10.15674/0030-5987201726-13

Issue

Section

ORIGINAL ARTICLES