НОВЫЕ МЕТОДЫ, РАЦИОНАЛИЗАЦИЯ И ИЗОБРЕТАТЕЛЬСТВО

УДК 616.718.45-007.24:616-092.9

Способи моделювання діафізарних деформацій стегнової кістки щурів

М.О. Корж, К.К. Романенко, Н.О. Ашукіна, Л.Д. Горидова, Д.В. Прозоровський

ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка АМН України», Харків

Ключові слова: діафізарні деформації, моделювання, стегнова кістка, щури

Вступ

Лікування діафізарних переломів довгих кісток нижньої кінцівки, незважаючи на сучасний стан розвитку ортопедичної науки та впровадження нових методів фіксації відламків, характеризується значним відсотком незадовільних результатів [1, 2]. Серед факторів, що можуть спричиняти розвиток післятравматичних деформацій довгих кісток з порушенням функціональної придатності кінцівки в цілому, дослідниками та клініцистами визначені недотримання технології лікування переломів і розлади репаративного остеогенезу у зв'язку з наявністю різних факторів ризику.

Однак поза увагою спеціалістів залишаються стан і перебудова м'яких тканин та їх роль у відновленні анатомо-функціональних характеристик ушкодженого сегмента, незважаючи на те, що проведені багатопланові дослідження пацієнтів з незрощеннями довгих кісток визначили масивне ушкодження м'якотканинних структур як один з вагомих факторів ризику розвитку дисрегенерації кісток [3].

У зв'язку з тим, що дослідити стадійно-часові характеристики репаративного остеогенезу, структурні зміни у м'язах і кровоносних судинах, що оточують зону ушкодження, які відбуваються в разі розвитку післятравматичних деформацій, на клітинному, тканинному рівнях неможливо в умовах клінічного спостереження, вважаємо доцільним звернутися до експерименту як методу наукового дослідження.

На сьогодні в літературі описано значну кількість моделей переломів кісток у тварин, які було використано з метою розробки методів оптимізації репаративного остеогенезу під час застосування біологічних [4] і синтетичних матеріалів [5], факторів росту та ін. [6, 7]; з'ясування факторів, що призводять до уповільнення консолідації відламків кісток і створення нових досконалих та ефективних технологій лікування пацієнтів з переломами кісток [8, 9]. Протягом багатьох років експериментально-теоретичні аспекти репаративної регенерації кістки досліджували в Інституті ім. проф. М.І. Ситенка. Значну кількість знань щодо відновлення цілісності кістки в разі переломів було одержано в експериментах на тваринах і підтверджено клінічними та епідеміологічними дослідженнями [10–12].

Проте дані щодо створення експериментальних деформацій довгих кісток і визначення за цих умов перебігу репаративного остеогенезу та структурно-функціональних характеристик прилеглих до зони ушкодження тканин відсутні, і ці питання потребують розробки.

Мета дослідження: розробити експериментальні моделі післятравматичних діафізарних деформацій стегнової кістки лабораторних щурів із застосуванням різних способів фіксації.

Експеримент на лабораторних щурах

Для створення деформацій стегнових кісток лабораторних щурів було застосовано внутрішньокісткові і зовнішній, спице-стержневий, фіксатори.

В основу всіх способів моделювання було покладено порушення цілісності стегнових кісток лабораторних тварин і подальше зіставлення кісткових фрагментів з використанням фіксаторів із заданим кутовим співвідношенням відносно один одного та одного з чотирьох видів деформації (varus, valgus, antecurvatio, recurvatio). Кут деформації (35°) для отримання максимального напруження в м'язах був обґрунтований методами мате-

матичного моделювання. Для цього за допомогою методу кінцевих елементів було створено об'ємну комп'ютерну модель діафізарної деформації кістки з можливістю зміни кута деформації від 5° до 50° (з інтервалом 5°) і навантажено двома способами: 1) розтягнення кістки, 2) вигин кістки. Встановлено, що в разі збільшення кута діафізарної деформації (модель під час навантаження на розтягнення кістки) величина максимального напруження в м'якотканинному компоненті з увігнутого боку зменшується і є найбільш вираженою у випадку невеликих кутів діафізарної деформації (до 35°). Під час навантаження моделі на вигин кістки максимальні напруження в м'якотканинному компоненті практично не залежать від кута діафізарної деформації та мають меншу величину в порівнянні з варіантом навантаження на розтягнення.

Хірургічні втручання тваринам виконували в операційній експериментально-біологічної клініки ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка АМН України» під загальним наркозом (аміназин — 10 мг/кг, кетамін — 50 мг/кг) в асептичних умовах.

Модель I з використанням внутрішньокісткового фіксатора (нестабільний остеосинтез)

Для формування нестабільної фіксації відламків у першому випадку було використано циліндричний внутрішньокістковий фіксатор, який виготовляли відповідно до довжини кістки та вигинали під кутом 35°. Такий фіксатор забезпечує стабільну кутову фіксацію, але не запобігає ротаційним рухам відламків. Операцію виконували таким чином: після обробки операційного поля розчином йоду робили розріз шкіри, із міжм'язового бічного доступу відкривали середню третину діафіза стегнової кістки, за допомогою дискової пилки відтворювали поперечний перелом. Для моделювання деформації в кістковомозковий канал вводили зігнутий циліндричний фіксатор. Кісткові фрагменти зводили до досягнення контакту. Рану обробляли розчином антибіотика та пошарово ушивали. Безпосередньо після операції всім щурам виконували рентгенографію. В якості прикладу на рис. 1 а наведено рентгенограму оперованої кінцівки щура, якому моделювали деформацію antecuravatio. Через 3 місяці на рентгенограмі стегнової кістки щура з використанням для фіксації відламків інтрамедулярно проведеного циліндричного фіксатора показано формування кісткової мозолі з візуалізацією лінії перелому (рис. 1 б), що свідчить про нестабільну фіксацію відламків.

Рис. 1. Фотовідбитки з рентгенограм кінцівки щура: а) після хірургічного втручання, інтрамедулярна фіксація нестабільна; б) 3 місяці після втручання, простежується лінія перелому

Модель 2 з використанням внутрішньокісткового фіксатора (стабільний остеосинтез)

У наступній серії для створення стабільної фіксації кісткових відламків в експериментальній моделі в якості інтрамедулярного фіксатора було застосовано штифт перерізом прямокутної форми, який також відповідав розмірам кістки за довжиною та був зігнутий під кутом 35°. Завдяки своїй формі під час згинання по площині чи ребру такий штифт забезпечує стабільну фіксацію кісткових фрагментів не тільки по довжині і кутову, а й ротаційну. Стадії хірургічного втручання були аналогічними вищевикладеним.

На рис. 2 а наведено фотовідбиток з рентгенограми оперованої кінцівки щура, якому було виконано остеосинтез стегнової кістки за допомогою штифта перерізом прямокутної форми безпосередньо після створення деформації antecurvatio. Через 3 місяці після виконання операції у щурів даної серії рентгенологічно спостерігалося зрощення кісткових відламків з утворенням гіпертрофованої кісткової мозолі (рис. 2 б), що свідчить про досягнення стабільної фіксації кісткових фрагментів у розробленій моделі.

Модель 3 з використанням зовнішнього спице-стержневого фіксатора

У зв'язку з тим, що використання інтрамедулярного фіксатора відбувається з додатковим травмуванням періосту та розташованих навколо м'яких тканин, а також негативно впливає на перебіг репаративного остеогенезу внаслідок порушення цілісності тканин у кістковомозковому каналі, було

Рис. 2. Фотовідбитки з рентгенограм кінцівки щура: а) безпосередньо після хірургічного втручання, інтрамедулярна фіксація стабільна; б) 3 місяці після втручання, щільне зрощення кісткових фрагментів

розроблено спице-стержневий зовнішній фіксатор (патент UA 39329 U [13]), який встановлювали таким чином. Лінійним розтином довжиною 2 см виділяли бічну поверхню середньої третини діафіза стегнової кістки. На відстані 3 мм і 9 мм від зони остеотомії по зовнішній поверхні стегна в дистальний (1 на рис. 3) і проксимальний (2 на рис. 3) фрагменти кістки перпендикулярно до їх поздовжньої осі встановлювали по два стержні (3 на рис. 3) з метричною різьбою діаметром 1 мм таким чином, щоб вони проходили через зовнішній і внутрішній кіркові шари. За допомогою дискової пилки робили остеотомію стегнової кістки, а потім надавали кістковим фрагментам кутову деформацію на визначений кут (α=35°). Стержні фіксували між собою за допомогою зігнутої під кутом 35° пластини (4 на рис. 3) і прикріплювали до пластини за допомогою гвинтів (5 на рис. 3), що вкручували в різьбові отвори, виконані на бічних ділянках зігнутої пластини (4 на рис. 3).

Після операції щури, яких утримували в окремих клітках, були активні, повністю навантажува-

Рис 3. Схематичне зображення (а) і загальний вигляд (б) пристрою моделювання деформації з використанням зовнішнього фіксатора на базі стержнів

ли кінцівку (рис. 4 а). На рентгенограмі оперованої кінцівки (рис. 4 б), яку виконано безпосередньо після операції, чітко візуалізується лінія перелому, відламки знаходяться в щільному контакті, їх осьові співвідношення становлять 35°.

Таким чином, в експериментах на лабораторних щурах розроблено моделі післятравматичних деформацій стегнової кістки з використанням інтрамедулярного та позаосередкового остеосинтезу. Методами рентгенографії встановлено, що стабільне з'єднання відламків кісток у розроблених моделях досягається під час застосування внутрішньокісткового фіксатора перерізом прямокутної форми та створеного позаосередкового спице-стержневого фіксатора з заданим кутом деформації. У випадку використання в якості внутрішньокісткового фіксатора циліндричного штифта була відсутня ротаційна стабільність, але наявна кутова.

Розроблені експериментальні моделі дозволять з'ясувати взаємозв'язок структурно-функціональних змін у тканинах ушкодженого сегмента (кіст-

Рис. 4. Фіксація відламків стегнової кістки щура за допомогою зовнішнього спице-стержневого фіксатора: а) загальний вигляд щура після оперативного втручання; б) фотовідбиток з рентгенограми оперованої кінцівки

ковий регенерат, сухожилково-м'язові комплекси) з наявністю післятравматичних діафізарних деформацій та їхній вплив на функціональне відновлення кінцівки в цілому.

Література

- Weight M. Early results of the less invasive stabilization system for mechanically unstable fractures of the distal femur (AO/OTA types A2, A3, C2, and C3) [Text] / M. Weight, C. Collinge // J. Orthop. Trauma. — 2004. — Vol. 18. — P. 503–508.
- Шевцов В.И. Лечение ложных суставов трубчатых костей методом управляемого чрескостного остеосинтеза [Текст] / В.И. Шевцов // Гений ортопедии. — 1996. — № 4. — С. 30–34.
- Романенко К.К. Діафізарні переломи довгих кісток, що не зрослися (чинники ризику, діагностика, лікування) [Текст]: автореф. дис. канд. мед. наук: 14.01.21 / Костянтин Костянтинович Романенко. — Харків, 2002. — 19 с.
- Allogenic mesenchymal cells regenerate bone in a criticalsized canine segmental defect [Text] / T.L. Arinzen, S.J. Peter, M.P. Archambault et al.// J. Bone Join Surg. — 2003. — Vol. 85-A. — P. 1927–1935.
- Saito T. Osteogenic response of hydroxyapatite cement implanted into the femur of rats with experimentally induced osteoporosis [Text] / T. Saito, Y. Kin, T. Koshino // Biomaterials. — 2002. — Vol. 23. — P. 2711–2716.
- 6. Recombinant human platelet-derived growth factor-BB augmentation of new-bone formation in a rat model of distraction osteogenesis [Text] / D.C. Moore, M.G. Ehrlich, S.C. McAl-

lister et al.// J. Bone Joint Surg. — 2009. — Vol. 91-A. — P. 1973–1984.

- Scianidi M.F. Evaluation of recombinant human bone morphogenetic protein-2 as a bone graft substitute in a canine segmental defect model [Text] / M.F. Scianidi, K.D. Johnson // J. Orthoh. Res. 2000. Vol. 18. P. 289–302.
- Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: Localization of the cells that express the mRNAs and the distribution of types I and II collagens [Text] / G. Li, A.S. Virdi, D.E. Ashhurst et al. // Cell Biol. Int. — 2000. — Vol. 24. — P. 25–33.
- Fracture healing a mouse model for senile osteoporosis [Text] / M. Egermann, P. Heil, I. Groengroeft et al. // European Cell and Mat. — 2007. — Vol. 14, Suppl. 1. — P. 4.
- Корж А.А. Репаративная регенерация кости [Текст] / А.А. Корж, А.М. Белоус, Е.Я. Панков. — М.: Медицина, 1972. — 270 с.
- Корж Н.А. Репаративная регенерация кости: современный взгляд на проблему. Стадии регенерации/ Н.А. Корж, Н.В. Дедух // Ортопед. травматол. — 2006. — № 1. — Р. 77–84.
- Малышкина С.В. Экспериментальное моделирование в научных исследованиях Института патологии позвоночника и суставов им. проф. М.И. Ситенко / С.В. Малышкина // Ортопед. травматол. — 2007. — №4. — С. 5–16.
- Пат. UA 39329 U, A61В 17/00, G09В 23/00. Спосіб моделювання перелому трубчатих кісток у дослідних тварин / Романенко К.К., Горидова Л.Д., Паздніков Р.В., Прозоровський Д.В.; заявник і патентовласник ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка АМН України». — № u200810277; заявл. 11.08.2008; опубл. 25.02.2009, Бюл. №4.

Стаття надійшла до редакції 06.01.2010 р.